Experiments can help scientists figure out how the molecules involved in the RNA world arose. These experiments serve as “proofs of concept” for hypotheses about steps in the origin of life — in other words, if a particular chemical reaction happens in a modern lab under conditions similar to those on early Earth, the same reaction could have happened on early Earth and could have played a role in the origin of life. The 1953 Miller-Urey experiment, for example, simulated early Earth’s atmosphere with nothing more than water, hydrogen, ammonia, and methane and an electrical charge standing in for lightning, and produced complex organic compounds like amino acids. Now, scientists have learned more about the environmental and atmospheric conditions on early Earth and no longer think that the conditions used by Miller and Urey were quite right. However, since Miller and Urey, many scientists have performed experiments using more accurate environmental conditions and exploring alternate scenarios for these reactions. These experiments yielded similar results – complex molecules could have formed in the conditions on early Earth.
This experimental approach can also help scientists study the functioning of the RNA world itself. For example, origins biochemist, Andy Ellington, hypothesizes that in the early RNA world, RNA copied itself, not by matching individual units of the molecules (as in modern DNA), but by matching short strings of units — it’s a bit like assembling a house from prefabricated walls instead of brick by brick. He is studying this hypothesis by performing experiments to search for molecules that copy themselves like this and to study how they evolve.